MATLAB Exercise 7 – Calculus

- 1. Try to express y to be a compose function of x.
 - 1) $v1 = \sqrt{1 + u^2}$, $u = e^{-x}$:
 - 2) $v2 = \sqrt{1 + u^2}$, $u = \ln v$, $v = e^{-x}$;
 - 3) $v = \sqrt{1 + u^2}$, $u = \ln v$, $v = \sin w$, $w = e^{-x}$.
- 2. Try to generate the converse function of y.
 - 1) $v = \sqrt{1 + \ln^2 \sin x}$
 - 2) $y = \sqrt{x + \ln \sin u}$, where u is as the independent variable
 - 3) $y = \sqrt{x + \ln \sin u}$, where x is as the independent variable
- 3. Let $x = \frac{\pi}{4}$. Try to evaluate the value of $\sin x$ (express the result as $1/2*2^{(1/2)}$) and $arc \sin(\sin x)$ (express the result as pi/4).
- 4. Compute the following limits, and simplify them.
 - 1) $\lim_{x \to 0} \frac{\tan nx \sin mx}{x}$ 2) $\lim_{x \to y} \frac{e^x e^y}{x y}$
- 3) $\lim_{x \to +\infty} \frac{x^3}{2x + 100}$

- 4) $\lim_{x \to -\infty} \frac{x^3}{\sin x}$
- 5) $\lim_{x \to \frac{\pi^+}{4}} (\tan x)^{\tan 2x}$
- 6) $\lim_{x \to \pi^{-}} \tan \frac{x}{2}$
- 5. 1) Compute the limit $\lim_{h\to 0} \frac{(x+h)^n x^n}{h}$, and simplify it.
 - 2) Compute $(x^n)'$ by diff.
- 6. Compute the following derivatives

 - 1) $\frac{dg}{dx}$ for $g(x) = \frac{x^3 5}{2x^2 + 7}$ 2) $\frac{d^2g}{dxdy}$ for $g(x, y) = \frac{x^3y 5y}{2x^2 + 7}$
 - 3) $\frac{dg}{dy}\Big|_{y=1,y=2}$ for $g(x,y) = \frac{x^3y 5y}{2x^2 + 7}$ 4) $f^{(5)}$ for $f = \sin x \sin 2x \sin 3x$
- 7. Let $A = [a_1, a_2, ..., a_n]$ is a vector with n elements, say A = [1, 5, 8, -2, 6, 3], how can we generate a new vector

1)
$$B = [a_1 - a_2, a_2 - a_3, ..., a_{n-1} - a_n]$$
?

2)
$$C = [a_1 - 2a_2 + a_3, a_2 - 2a_3 + a_4, ..., a_{n-2} - 2a_{n-1} + a_n]$$
.

Help Select Matlab Help in the toolbar, then select Index and input diff to see its different

8. Calculate the following calculus

1)
$$\int \frac{1}{x+1} dx$$

2)
$$\int_0^1 \frac{1}{x+1} dx$$
 3) $\int_0^t \frac{1}{x+1} dx$

3)
$$\int_0^t \frac{1}{x+1} dx$$

$$4) \int_{-\infty}^{+\infty} \frac{\sin y}{(x^2 y + 1)} dx$$

4)
$$\int_{-\infty}^{+\infty} \frac{\sin y}{(x^2 y + 1)} dx$$
 5)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\sin y}{(x^2 y + 1)} dx dy$$
.

Help Select Matlab Help in the toolbar, then select Index and input int to know the usage of this function, for example: int(f,x,-inf,inf)

- 9. Let $f = x^2 + 1$, compare it with the results of int(diff(f)) and diff(int(f)), respectively.
- 10. Compute the following summations

$$1) \sum_{k=1}^{n} k^3$$

2)
$$\sum_{k=1}^{\infty} \frac{1}{k^2 - 1}$$
 3) $\sum_{k=2}^{\infty} \frac{1}{k^2 - 1}$ 4) $\sum_{k=1}^{\infty} k^2 x^k$

$$3) \sum_{k=2}^{\infty} \frac{1}{k^2 - 1}$$

$$4) \quad \sum_{k=1}^{\infty} k^2 x^k$$

- 11. Evaluate Taylor series expansions of
 - 1) $f(x) = e^{2x}$ at point 0 to the first 15 items;
 - 2) $f(x) = e^{2x}$ at point -1 to the first 9 items;
 - 3) $f(x) = e^{2xy}$ the first 5 items of Taylor series expansion responding to x.
- 12. *Compare the result $\int_a^b (\cos x + 2x) dx$ with $\left(\sin\left(\frac{a+b}{2}\right) + 2\frac{(a+b)}{2}\right)(b-a)$ when b equals to $a+10\pi$, $a+5\pi$, $a+\pi$, $a+1/2\pi$, $a+1/64\pi$, $a+1/256\pi$, respectively. What conclusion you may reach?
- 13. *Examine integral mean-value theorem, that is for any $f(x) \in C[a,b]$, there is a $\xi \in (a,b)$, such that $\int_a^b f(x)dx = f(\xi)(b-a)$. For example, try to find out the $\xi \in (0,1)$, such that $\int_0^1 \frac{1}{(x+1)^2} dx = \frac{1}{(\xi+1)^2}$.